
DisplayCluster: An Interactive Visualization Environment for Tiled Displays

Gregory P. Johnson, Gregory D. Abram, Brandt Westing, Paul Navrátil and Kelly Gaither

Texas Advanced Computing Center (TACC)
The University of Texas at Austin

Austin, Texas
Email: {gregj, gda, bwesting, pnav, kelly}@tacc.utexas.edu

Abstract—DisplayCluster is an interactive visualization envi-
ronment for cluster-driven tiled displays. It provides a dynamic,
desktop-like windowing system with built-in media viewing
capability that supports ultra high-resolution imagery and
video content and streaming that allows arbitrary applications
from remote sources (such as laptops or remote visualiza-
tion machines) to be shown. This support extends to high-
performance parallel visualization applications, enabling inter-
active streaming and display for hundred-megapixel dynamic
content. DisplayCluster also supports multi-user, multi-modal
interaction via devices such as joysticks, smartphones, and the
Microsoft Kinect. Further, our environment provides a Python-
based scripting interface to automate any set of interactions.
In this paper, we describe the features and architecture of Dis-
playCluster, compare it to existing tiled display environments,
and present examples of how it can combine the capabilities
of large-scale remote visualization clusters and high-resolution
tiled display systems. In particular, we demonstrate that Dis-
playCluster can stream and display up to 36 megapixels in real
time and as many as 144 megapixels interactively, which is 3×
faster and 4× larger than other available display environments.
Further, we achieve over a gigapixel per second of aggregate
bandwidth streaming between a remote visualization cluster
and our tiled display system.

Keywords-visualization; displays; high performance comput-
ing; human computer interaction; wide area networks;

I. INTRODUCTION

In the age of big data, we will often need more pixels

for data than a single display can provide. Device-generated

data, such as from computed tomography (CT) machines and

electron microscopes, can already yield images reaching into

the gigapixels; petascale simulations can also require mega-

or gigapixels to capture feature details; and digital media,

such as digital documents or social media, can require signif-

icant screen space to display detailed relationship networks.

In addition, these and other sources can contain distinct but

correlated data views that benefit from simultaneous display.

Any of these are difficult to accomplish on a single screen.

Fortunately, the continued development of commodity

hardware has reduced prices to the point that many monitors

can be used to create very high resolution displays at a rea-

sonable cost. Recent displays constructed from commodity

LCD monitors have eclipsed the three hundred megapixel

barrier (Figure 1) [29], with a number of two hundred

megapixel displays close behind [17]. Such displays are

too large for conventional windowing software: DMX for

X Windows on Linux can handle only sixteen separate

clients [20], and Windows and MacOS handle only the

displays connected to a single workstation.

A different windowing solution is necessary for these

displays. Unfortunately, current windowing solutions for

tiled displays [18], [34] can display images and movies at

their native resolution, but they cannot display unmodified

arbitrary applications. Custom API solutions [27], [11],

[18], [19] enable an application to stream directly to a

tiled display, though these require modification of source

code which eliminates closed-source applications. Custom

OpenGL libraries [23] allow distributed rendering and dis-

play, but only for a single OpenGL-based application at a

time.

In this paper, we present DisplayCluster, a novel environ-

ment to drive tiled displays that combines the various fea-

tures of previous display managers and adds novel features

such as scriptability, smartphone and touchless interaction

modes, massive pixel streaming from remote applications,

multiple gigapixel image display and zoom and desktop

application streaming to displays that allows any application

to be shown interactively. We show that DisplayCluster can

effectively display movies and gigapixel content simulta-

neously as well as stream hundreds of megapixels from

a remote source interactively. We further demonstrate that

DisplayCluster matches or exceeds the performance of other

windowing environments, while providing more features. In

particular, DisplayCluster can stream images, movies and

applications up to 36 megapixels in real time and can stream

up to 144 megapixels interactively, which represents a 3×
improvement in rendering speed and a 4× improvement in

size capability over other display environments. Further, we

achieve over a gigapixel per second of aggregate bandwidth

streaming between a remote visualization cluster and our

tiled display system.

The rest of the paper is as follows: In Section II we discuss

related work; we describe the architecture of DisplayCluster

in Section III; then, in Section IV we discuss our tests and

results; and we conclude with Section V.

2012 IEEE International Conference on Cluster Computing

978-0-7695-4807-4/12 $26.00 © 2012 IEEE

DOI 10.1109/CLUSTER.2012.78

239

Figure 1. DisplayCluster running on Stallion, a 15 x 5 tiled display of 30-inch Dell LCD monitors providing 307 megapixels of resolution, at The
University of Texas at Austin.

II. RELATED WORK

Distributed display environments such as tiled wall or

multi-projector systems have become common in labora-

tories, classrooms, and other settings. These environments

are useful when a large display area is required [15],

or a high number of aggregate pixels increase the user’s

ability to perceive detail and relationships in the data [10],

[9], [13], [14], [36]. These benefits appear to scale with

increased display size. Further, the physical navigation of

large displays is a primary component of user productivity

and satisfaction in large-scale visualization tasks [7], [8].

Below, we place DisplayCluster in the context of related

work. We provide a comparative overview here, and we

contrast specific features of DisplayCluster against other

display environments in Section III.

A. Distributed Display Environments and Parallel Render-
ing Frameworks

A display environment for cluster-driven high resolution

displays aims to provide a single usable workspace across

the distributed system, in a way similar to the environment

on a single workstation. One of the first distributed display

environments was DMX [20], an extension to the X window-

ing environment. This enabled a fully-functional windowing

environment across a cluster, but unfortunately DMX does

not scale beyond sixteen tiles.

The Scalable Adaptive Graphics Environment

(SAGE) [34] focused on a scalable but limited environment,

departing from the full-featured approach of DMX. SAGE

was developed with an architecture in which all pixels are

streamed to the multi-node display from sources over the

network. SAGE furthered this idea by providing the SAGE

Application Interface Library (SAIL) [25] that enabled

application instances to be streamed across multiple

connections. While SAGE supports parallel streaming

from multiple sources and provides for interaction from

multiple input devices [24], the bandwidth requirements

of its socket-based architecture limit its scalability over

tens of megapixels, requiring high-speed dedicated network

connections for interactive performance. Its streaming has

been shown to scale up to 38 megapixels at 9.3 frames

per second, on a dedicated 10-gigabit connection [25]. In

addition, SAGE does not support dynamic zooming within

images or videos.

In contrast to SAGE’s streaming architecture, CGLX [18]

provides a semi-transparent OpenGL-based graphics frame-

work for distributed visualization systems. CGLX emulates

a unified OpenGL context by intercepting and manipulating

certain OpenGL directives. In this way, an application is run

on each node within the cluster, and each node renders the

portion of the view frustum according to the location of the

node’s displays within the total display structure. Another

framework, Image Composition Engine for Tiles (IceT) [27],

uses a sort-last parallel rendering library that can distribute

image rendering in a distributed system. Equalizer [19] is a

middleware library for parallel OpenGL-based applications

that facilitates distributed rendering, load balancing, and vir-

tual reality applications. In addition, Garuda [30] is a frame-

work for transparently rendering any application written with

OpenSceneGraph (OSG) across a tiled display. To use these

middleware libraries, a user must modify the source of an

application, which limits the set of applications to those

where both the source is available and the user has the skill

and time to implement the changes. An OpenGL intercept

library, like WireGL [22] or Chromium [23], can distribute

a single OpenGL application across multiple displays, but

nothing else can be shown simultaneously and the available

implementations have implemented only version one of the

OpenGL standard.

The drawbacks of these display and rendering environ-

ments include limited scalability for streaming more than

tens of megapixels, the necessity to modify application

source code, and lack of support for displaying multiple

applications simultaneously. DisplayCluster is designed to

fill these gaps.

240

Figure 2. DisplayCluster supports media content and arbitrary applications
through a streaming interface. Multi-user concurrent interaction is supported
through several devices.

B. Interacting with High Resolution Displays

While studies show that large high-resolution displays

have advantages in usability and productivity, unique con-

cerns are raised in their use. These concerns stem from the

user’s ability to interact with the display system from both

a position adjacent to the display with local interaction, and

positions further from the display where the aggregate size

of the display become important [21]. Solutions to these

interaction problems and the study of their applicability have

been proposed and implemented on many fronts. Touch-less

interaction methods allow for the use of the system with

gestures without physically touching the display surface or

mouse [28], [38], [37]. Pointing techniques have been used

to allow precise interaction at a distance by Lumipoint [16].

Furthermore, the application of touch interaction to large

displays provides a natural usage scenario for effective

interaction [39], [12], [32], [31]. DisplayCluster enables

these display interaction modes, expanding the methods in

which large tiled displays can be used.

III. ARCHITECTURE

DisplayCluster provides a cross-platform, unified desktop-

like environment for cluster-driven tiled displays. It executes

in parallel across a cluster, taking control of the attached dis-

plays. A distributed windowing environment is then provided

through which media content and arbitrary applications can

be viewed and interacted with (Figure 2).

A. Windowing Environment

The windowing environment provided by DisplayCluster

allows for content to be dynamically added, removed, and

repositioned on the tiled display (Figure 3). This is similar to

Figure 3. DisplayCluster’s graphical user interface. The windowing
environment allows content to be easily repositioned on a tiled display.

the approach used by SAGE [25], but differs from the static

layouts provided by other tiled display environments [18],

[23]. View transformations associated with window coor-

dinates and tiled display layout are handled automatically.

This simplifies rendering procedures for various content

types, and also allows for window-level culling on individ-

ual DisplayCluster processes to improve performance and

scalability.

Associated with each window in DisplayCluster is an

object containing metadata describing the content it is to

display and its windowing parameters. This metadata is

managed by a master process, and synchronized to the other

processes on the cluster. The individual cluster processes

are then tasked with locating, processing, and rendering the

content referenced by their visible windows. This separation

allows for the compute-intensive workload to occur in paral-

lel and asynchronously on the cluster while user interaction

is taking place. Further, metadata for all windows can be

saved to a state file, which can be later retrieved to restore a

complete set of content on the tiled display, a feature lacking

in other tiled display environments. This improves usability

of the tiled display, allowing it to more easily be used in

presentations and demonstrations.

Windows can also be zoomed and panned within for any

supported content type. This is most widely used for high-

resolution imagery, but also useful for animations and high-

resolution streamed content (Figure 4).

B. Media Viewing

DisplayCluster provides built-in support for media content

including imagery and video. Images of standard resolutions

(up to 16 megapixels) are loaded by the appropriate image

library and displayed directly. Similarly, video and anima-

tions are processed by the FFmpeg library [2].

High-resolution imagery (greater than 16 megapixels) is

handled specially through a pyramiding process (Figure

5). The pyramiding process can either be done as a pre-

processing step saving results to disk, or in real-time by the

DisplayCluster cluster processes. An image pyramid consists

of several groups of images, each group corresponding to

241

Figure 5. High-resolution imagery is handled through a pyramiding process. The appropriate level of detail is shown depending on the window size on
the tiled display.

Figure 4. Windows can be zoomed and panned within for any supported
content type. The zoomed area within the full image is shown to assist in
navigation. The user shown is interacting with DisplayCluster via gestures
and a Microsoft Kinect.

a level of detail. Each component image is of a fixed

resolution (typically 512 × 512 pixels). The pyramiding

process generates the images corresponding to these levels

of detail from the original high-resolution image. The first

(and lowest) level of detail is represented by a single image.

Subsequent levels of detail divide each image region from

the previous level of detail into quadrants, providing four

times the resolution. The final level of detail contains the

full resolution of the original image. An arbitrary number of

such high-resolution images can be shown simultaneously.

Other tools such as MagicCarpet (provided as a separate

environment from the SAGE [25] developers) can only

handle a single high-resolution image in a static layout.

CGLX’s image viewer can handle several high-resolution

images simultaneously, but not together with other content

types [18].

It is worth noting the scalability of the media viewing

capability provided by DisplayCluster. Since the cluster

nodes process the media content directly and off-screen

windows are automatically culled, each process generally

only handles a small subset of the displayed content. This

approach takes advantage of the compute capabilities of

the cluster nodes. Since each node decodes its own on-

screen media content, more content can be shown on the

entire tiled display simultaneously compared to streaming

frameworks such as SAGE [25], where media content is

decoded separately on a limited set of processes and then

streamed over the network. Further, as opposed to SAGE,

only compressed data is read from disk / network file

storage, which reduces the required network bandwidth.

This allows DisplayCluster to take advantage of high-speed

parallel filesystems for sourcing content. This approach

is similar to CGLX [18]; however since CGLX requires

separate applications for viewing each content type, multiple

content types can not be easily shown simultaneously as with

DisplayCluster.

C. Streaming

DisplayCluster provides a network-based streaming in-

terface that enables arbitrary applications to be shown on

a tiled display. Applications provide image buffers which

are compressed, sent over the network, and then received,

decompressed and displayed by DisplayCluster. This pixel-

based streaming approach can be integrated into existing

applications with minimal modification. Further, unmodified

applications can be streamed through a provided Desktop-

Streamer application that captures a user-specified region

of a desktop. The streaming interface supports resolutions

upwards of a hundred megapixels, which makes it ideal for

high-resolution scientific visualization applications.

Streamed content is displayed in a window on the tiled

display in the same way media content is shown. Streams

can provide content for a full window or for segments of

a window. The set of window segments representing a full

window can be sent over one or many network connections.

This flexibility enables streamed content to be generated and

compressed in parallel from a single process or from a set

of distributed processes (Figure 6).

242

Figure 6. DisplayCluster’s streaming capability allows content to be streamed in segments and from one or many network connections.

Compression and decompression uses the libjpeg-turbo

library [3], a derivative of libjpeg that uses SIMD instruc-

tions to accelerate JPEG conversion. JPEG compression

reduces image data size significantly, lessening the required

network bandwidth and allowing for higher resolutions to

be streamed interactively. SAGE uses DXT compression,

which has a fixed compression ratio of 6:1 [33]. In com-

parison, JPEG compression achieves a compression ratio of

between 15:1 to 23:1 for high and medium image quality,

respectively.

1) Parallel Visualization Applications: DisplayCluster

provides a modified version of the Image Composition for

Tiles (IceT) library [27] with streaming support. Visualiza-

tion applications that use IceT can link with this modified

version and stream directly to a running DisplayCluster

instance. No modification of the underlying visualization

application is required. This gives DisplayCluster direct

support for existing scientific visualization applications that

use IceT such as ParaView [6]. Additionally, IceT can be

used as a framework for developing new DisplayCluster-

enabled applications. These applications then have the flex-

ibility to stream to DisplayCluster or be run independently.

They can be run on the tiled display cluster, or on remote

resources such as remote visualization clusters. Further, the

applications can run using a single process at desktop reso-

lution, or at scale using many processes giving resolutions of

hundreds of megapixels. CGLX also provides an interface

for developing OpenGL applications [18]. Although these

applications can run interactively at the native resolution of

the tiled display, they lack the data parallel capabilities of

IceT, and cannot be run from remote resources. Further, such

applications can only be run in the context of a running

CGLX instance.

D. Interaction

DisplayCluster supports multiple types of control devices

and allows for concurrent interaction from all connected

devices. This allows multiple users to interact with Display-

Cluster simultaneously, better supporting collaborative use

of the tiled display. All interactions are handled by a master

process, where each connected device has a corresponding

cursor on the tiled display. When a device manipulates a

window (moving, resizing, zooming or panning), a copy

of the window object is created and manipulated. Changes

to the window parameters are then communicated asyn-

chronously to the primary window object and then to the

tiled display cluster. In this way, user interactions do not

conflict with each other. For example, one user can be

zooming within a window while another pans within it at

the same time.

DisplayCluster supports many types of input devices.

Support for traditional mouse and keyboard interaction is

provided at the console graphical user interface. Multi-

touch interaction is supported through a TUIO library [26]

network listener. Using TUIO as a layer of abstraction

provides support for many types of multi-touch devices over

the network. These devices include smart-phones, tablets,

and large touch overlays. Gamepad controllers and other

joystick devices are supported in DisplayCluster and provide

a natural way to interact with the system in a wired or

wireless modality.

Finally, touch-less interaction is supported in Display-

Cluster through the OpenNI [4] natural interaction library

243

Figure 7. The skeletal representation of a user provides a basis for
input gestures. Shown here are the zoom-out, pan, and zoom-in gestures,
respectively.

and depth cameras such as the Microsoft Kinect. This

interaction method provides for control of the windowing

environment without the need to use any device other than

the stationary sensor. The users present within the field of

view (FOV) of the sensor are tracked and their skeleton joint

locations are estimated in an automatic calibration step [35].

Gestures are interpreted from the skeletal representations

(see Figure 7) to manipulate windows. These gestures allow

users to move, resize, zoom and pan within windows. To

provide visual feedback, skeletal representations of the users

present within the FOV of the sensor are rendered on the

tiled display as shown in Figure 4.

E. Scripting Interface

Tiled displays are often used as presentation or demonstra-

tion environments. For these use cases it is beneficial to have

an interface to automate interaction with the tiled display

software. DisplayCluster provides a fully-featured Python

interface that allows users to script actions such as opening

and removing windows of content, moving and resizing

windows, and zooming and panning within windows. These

actions can be timed to choreograph full demonstrations on

the tiled display.

F. Platform Indepedence

In order to provide cross-platform portability of this wide

range of features, DisplayCluster is built upon industry

standard component libraries. The underlying framework of

the DisplayCluster processes is built using features of the

Boost and Qt libraries [1], [5]. In addition to providing

the console graphical user interface for DisplayCluster, the

Qt library is used for much of the internal framework

including multi-threading, asynchronous messaging, and a

platform independent interface to OpenGL. The OpenNI and

TUIO libraries [4], [26] used for handling device interaction,

including gamepad controllers, touch devices, and touch-less

Kinect devices, are also platform portable.

The Message Passing Interface (MPI) is used for com-

munication and synchronization between the DisplayCluster

processes. This leverages the HPC community’s efforts at

Table I
RESOLUTION, NUMBER OF PROCESSES, SEGMENT SIZE, FRAME RATE,

AND PIXEL BANDWIDTH FOR TEST CASES CORRESPONDING TO

FIGURE 8.

Resolution
(megapixels)

Processes Segment
Size

Frames
per Second

Megapixels
per Second

1 1 10242 31 31

2 8 5122 31 62

4 16 5122 30 120

8 32 5122 30 240

16 64 5122 30 480

24 96 5122 30 720

32 128 5122 29 928

36 144 5122 29 1044

48 48 10242 12.5 600

64 64 10242 10.4 665.6

96 96 10242 9.3 892.8

128 128 10242 8.4 1075.2

144 144 10242 4.9 705.6

optimizing message passing across high-performance net-

works and support for high-performance interconnects such

as InfiniBand. MPI implementations typically get much

higher performance than TCP- or UDP-based socket pro-

tocols across such networks. Further enhancements to net-

working technology will be addressed at the MPI level en-

abling DisplayCluster to take advantage. Other tiled display

software environments such as SAGE and CGLX depend on

socket level interfaces for communication, and therefore are

limited in their support for higher speed technologies.

The use of these high-level component libraries enables

DisplayCluster to be compiled across multiple operating sys-

tems. At The University of Texas at Austin, DisplayCluster

runs tiled displays in both Linux- and Mac-based environ-

ments. Since these component libraries are also known to

work in Windows, we expect DisplayCluster to work there

as well. Additionally, the DesktopStreamer application used

for remote streaming runs successfully on Windows, Mac

and Linux operating systems.

IV. RESULTS

In this section we evaluate DisplayCluster’s streaming

performance for high-resolution scientific visualization ap-

plications from servers at remote sites to tiled displays.

We conduct our experiments on Stallion, a 307 megapixel

tiled display located at the TACC ACES Visualization Lab-

oratory on the campus of the University of Texas at Austin,

and Longhorn, a large-scale remote visualization cluster

located 9 miles away at the main TACC location on the

UT Pickle Research Campus.

A. Hardware

Stallion, built in 2008, consists of 23 Dell XPS 720 render

nodes and a Dell Precision 690 head node. Each render node

has an Intel quad-core Q6600 CPU, two NVIDIA GeForce

8800 GTX GPUs and 4 GB of memory. The head node

244

Figure 8. Performance of application streaming from the remote visualization cluster Longhorn to the tiled display Stallion. The non-streaming frame
rate shows rendering performance independent of DisplayCluster, and the streaming frame rate shows the displayed frame rate on the tiled display.

has two Intel Xeon X5355 quad-core CPUs, two NVIDIA

GeForce 8800 GTX GPUs and 16 GB of memory. The

cluster has both an InfiniBand SDR interconnect and a

gigabit Ethernet network. Stallion drives a 15 x 5 tiled

display of 30-inch Dell LCD monitors, each at 2560 x

1600 resolution. In total, Stallion provides 307 megapixels

of resolution, and is currently the highest-resolution tiled

display in the world (Figure 1).

Longhorn is TACC’s Dell XD visualization cluster. It has

256 compute nodes and 2 login nodes, with 240 nodes

containing 48GB of RAM, 8 Intel Nehalem cores (@ 2.5

GHz), and 2 NVIDIA Quadro FX 5800 GPUs. Longhorn

also has an additional 16 large-memory nodes containing

144GB of RAM, 8 Intel Nehalem cores (@ 2.5 GHz), and

2 NVIDIA Quadro FX 5800 GPUs. Longhorn provides 2048

compute cores, 13.5 TB aggregate memory and 512 GPUs.

B. Experiments

We evaluate the performance of streaming high-resolution

parallel rendering using DisplayCluster’s modified version

of the IceT library. The example IceT application renders

static geometry representing isosurfaces of a noise data set

in a rotating view (Figure 9). Although IceT can be used

for sort-last data parallel applications, in this experiment

we provide each rendering process with the entire dataset,

thereby eliminating the costly compositing required for the

data-parallel algorithm. This approach prevents compositing

from becoming a bottleneck, and enables us to evaluate

the performance impact of rendering and streaming high-

resolution results to a remote DisplayCluster system. Our

results thus demonstrate an upper-bound on performance;

the actual performance of real-world applications will vary

from this depending on the level of data parallelism (and

thus compositing) and application-specific processing and

rendering performance.

We conduct tests running the DisplayCluster-enabled IceT

application on Longhorn streaming to Stallion at varying

Figure 9. The example IceT application renders static geometry repre-
senting isosurfaces of a noise dataset in a rotating view. The application is
run at varying resolutions on the Longhorn remote visualization cluster and
streamed to DisplayCluster running on the Stallion tiled display system.

process counts and resolutions. In every case, eight rendering

processes run on each allocated Longhorn node (one for

each core) and share two graphics cards. In Figure 8 we

show the speed of display, in frames per second, of rendered

images of increasing size, as well as the application’s frame

rate without streaming to DisplayCluster. As we increase the

size of the displayed image, we have altered the number of

rendering processes and the sizes of the segments each must

render. The number of rendering processes determines the

number of streaming network connections to DisplayCluster,

while the segment size determines the rendering load on

Longhorn’s GPUs. These were varied in an effort to maxi-

mize the streamed frame rate for each resolution; future work

will provide a firmer basis for optimally specifying these

parameters. In Table I we show the number of rendering

processes and the sizes of tiles each renders for each full

output resolution. We use a maximum of 144 processes

and a segment size of 5122 from 2 to 36 megapixels; at

48 megapixels we increase the segment size to 10242 for

245

results up to 144 megapixels. A dip in frame rate occurs at

48 megapixels which corresponds to the increased rendering

and image compression / decompression load of the 10242

segment size. Note that DisplayCluster’s stream decoding on

the rendering cluster is currently throttled to approximately

30 frames per second.

DisplayCluster supports nearly 30 frames per second up to

36 megapixel resolutions, and scales up to 144 megapixels at

4.9 frames per second, which represents a 3× improvement

in rendering speed over SAGE and a 4× increase in size

at comparable rendering rate. Further, we achieve over

a gigapixel per second of aggregate bandwidth streaming

between a remote visualization cluster and our tiled display

system. In all test cases, the bandwidth used is under 53

megabytes per second. This allows DisplayCluster to be used

for high-resolution application streaming on existing shared

networks between supercomputing sites and tiled display

locations. Further, on slower networks DisplayCluster will

still be able to provide interactive performance at high

resolutions. SAGE, the other commonly used tiled display

streaming framework, has only been shown to scale up to 38

megapixel resolutions at 9.3 frames per second, with most

experimental results at 16 megapixels or less [25]. Those

results required a high-speed 10 gigabit dedicated network

connection.

V. CONCLUSION

In this paper, we have described DisplayCluster, a novel

environment for driving large tiled displays. DisplayCluster

combines the features of previous display environments,

for collaboration, application integration and image and

video display, and offers better scalability and the ability to

stream hundred megapixel images and native applications to

remote tiled displays, and DisplayCluster directly supports

visualization applications such as ParaView [6] through a

commonly used parallel rendering framework. DisplayClus-

ter is deployed on a variety of hardware configurations, and

it has demonstrated cross-platform capabilities on Linux,

MacOS and Windows. We have shown how it can combine

the capabilities of large-scale remote visualization clusters

and high-resolution tiled display systems.

We have shown that DisplayCluster’s streaming capability

scales to resolutions approaching that of the highest res-

olution tiled displays in the world. This is accomplished

at frame rates supporting interactive visualization, without

requiring high-speed dedicated network connectivity. We

have shown that DisplayCluster handles up to 36 megapixel

resolutions at near 30 frames per second, and scales up

to 144 megapixels at 4.9 frames per second. Further, we

achieve over a gigapixel per second of aggregate bandwidth

streaming between a remote visualization cluster and our

tiled display system. These results show both higher reso-

lution and a higher degree of interactivity than previously

published results.

In the future we plan to further enhance DisplayCluster’s

remote streaming capabilities, and provide better guidance

for optimally determining streaming configurations. We also

plan to continue exploration and integration of new inter-

action technologies and methods to enhance collaborative

usage of large display environments. Further, we plan to

examine DisplayCluster’s performance on more recent and

capable tiled display cluster hardware.

ACKNOWLEDGMENTS

This work was funded in part by U.S. National Science

Foundation grant OCI-0906379 and through the generous

support of Dell.

REFERENCES

[1] Boost C++ Libraries, http://www.boost.org/.

[2] FFMPEG Multimedia Framework, http://ffmpeg.org/.

[3] libjpeg-turbo JPEG Library, http://www.libjpeg-turbo.org/.

[4] OpenNI Natural Interaction Framework,
http://www.openni.org/.

[5] Qt Framework, http://qt.nokia.com/products/.

[6] James Ahrens, Berk Geveci, and Charles Law. The Visual-
ization Handbook, chapter ParaView: An End-User Tool for
Large Data Visualization. Elsevier, 2005.

[7] R. Ball and C. North. Realizing Embodied Interaction for
Visual Analytics through Large Displays. Computers &
Graphics, pages 380–400, 2007.

[8] R. Ball and C. North. The Effects of Peripheral Vision and
Physical Navigation in Large Scale Visualization. In Graphics
Interface, pages 9–16, 2008.

[9] R. Ball, M. Varghese, B. Carstensen, E.D. Cox, C. Fierer,
M. Peterson, and C. North. Evaluating the Benefits of Tiled
Displays for Navigating Maps. In International Conference
on Human-Computer Interaction, pages 66–71, 2005.

[10] Robert Ball and Chris North. Effects of Tiled High-Resolution
Display on Basic Visualization and Navigation Tasks. CHI 05
Extended Abstracts on Human Factors in Computing Systems,
05:1196, 2005.

[11] A. Bierbaum, P. Hartling, P. Morillo, and C. Cruz-Neira.
Implementing Immersive Clustering with VR Juggler. In
Computational Science and Its Applications, pages 1119–
1128, 2005.

[12] Andrew Bragdon and Hsu-sheng Ko. Gesture Select : Ac-
quiring Remote Targets on Large Displays without Pointing,
pages 187–196. ACM Press, 2011.

[13] M. Czerwinski, G. Smith, T. Regan, B. Meyers, G. Robertson,
and G. Starkweather. Toward Characterizing the Productivity
Benefits of Very Large Displays. In Eighth IFIP International
Conference on Human-Computer Interaction, 2003.

246

[14] M. Czerwinski, D.S. Tan, and G.G. Robertson. Women Take
a Wider View. In ACM Conference on Human Factors in
Computing Systems, pages 195–201, 2002.

[15] Mary Czerwinski, Greg Smith, Tim Regan, Brian Meyers,
George Robertson, and Gary Starkweather. Toward Char-
acterizing the Productivity Benefits of Very Large Displays,
pages 9–16. Number c. IOS Press, 2003.

[16] J Davis and X Chen. Lumipoint: Multi-User Laser-Based
Interaction on Large Tiled Displays. Displays, 23(5):205–
211, 2002.

[17] T.A. DeFanti, J. Leigh, L. Renambot, and et. al. The OptiPor-
tal, a Scalable Visualziation, Storage and Computing Interface
Device for the OptiPuter. Future Generation Computer
Systems, 25:114–123, 2009.

[18] Kai-Uwe Doerr and Falko Kuester. CGLX: A Scalable,
High-Performance Visualization Framework for Networked
Display Environments. IEEE Transactions on Visualization
and Computer Graphics, 17(3):320–332, 2011.

[19] S. Eilemann, M. Makhinya, and R. Pajarola. Equalizer: A
Scalable Parallel Rendering Framework. IEEE Transactions
on Visualization and Computer Graphics, 15:350–364, 2009.

[20] R.E. Faith and Kevin E. Martin. DMX: Distributed Multi-
headed X, 2004.

[21] Otmar Hilliges and Lucia Terrenghi. Overcoming Mode-
Changes on Multi-User Large Displays with Bi-Manual Inter-
action. Proceedings of International Workshop on MultiUser
and Ubiquitous User Interfaces, 10(1):1–3, 2006.

[22] Greg Humphreys, Ian Buck, Matthew Eldridge, and Pat Han-
rahan. Distributed Rendering for Scalable Displays. Proceed-
ings of the 2000 ACM/IEEE Conference on Supercomputing,
2000.

[23] Greg Humphreys, Mike Houston, Ren Ng, Randall Frank,
Sean Ahern, Peter D. Kirchner, and James T. Klosowski.
Chromium: A Stream-Processing Framework for Interactive
Rendering on Clusters. In Proceedings of SIGGRAPH Asia,
2008.

[24] Ratko Jagodic, Luc Renambot, Andrew Johnson, Jason Leigh,
and Sachin Deshpande. Enabling Multi-User Interaction in
Large High-Resolution Distributed Environments. Future
Generation Computer Systems, 27(7):914–923, 2010.

[25] Byungil Jeong, Luc Renambot, Ratko Jagodic, Rajvikram
Singh, Julieta Aguilera, Andrew Johnson, and Jason Leigh.
High-Performance Dynamic Graphics Streaming for Scalable
Adaptive Graphics Environment. Proceedings of the 2006
ACM/IEEE conference on Supercomputing, (November):24–
24, 2006.

[26] Martin Kaltenbrunner, Till Bovermann, Ross Bencina, and
Enrico Costanza. TUIO : A Protocol for Table-Top Tangible
User Interfaces. Neuroinformatics, 2005.

[27] K. Moreland, B. Wylie, and C. Pavlakos. Sort-Last Parallel
Rendering for Viewing Extremely Large Data Sets on Tile
Displays. In IEEE Symposium on Parallel and Large-Data
Visualization and Graphics, pages 85–92, 2001.

[28] Mathieu Nancel, Julie Wagner, Emmanuel Pietriga, Olivier
Chapuis, and Wendy Mackay. Mid-Air Pan-and-Zoom on
Wall-Sized Displays. Design, (May):177–186, 2011.

[29] Paul A. Navrátil, Brandt Westing, Gregory P. Johnson, Ash-
wini Athyle, Jose Carreno, and Freddy Rojas. A Practical
Guide to Large Tiled Displays. In International Symposium
on Visual Computing, 2009.

[30] Nirnimesh, P Harish, and P J Narayanan. Garuda: A Scalable
Tiled Display Wall Using Commodity PCs. IEEE Transac-
tions on Visualization and Computer Graphics, 13(5):864–
877, 2007.

[31] Peter Peltonen, Esko Kurvinen, Antti Salovaara, Giulio
Jacucci, Tommi Ilmonen, John Evans, Antti Oulasvirta, and
Petri Saarikko. Its Mine, Don’t Touch!: Interactions at a
Large Multi-Touch Display in a City Centre, volume 16, pages
1285–1294. ACM, 2008.

[32] Kevin Ponto, Kai Doerr, Tom Wypych, John Kooker, and
Falko Kuester. CGLXTouch: A Multi-User Multi-Touch Ap-
proach for Ultra-High-Resolution Collaborative Workspaces.
Future Generation Computer Systems, 27(6):649–656, 2010.

[33] Luc Renambot, Byungil Jeong, and Jason Leigh. Real-Time
Compression For High-Resolution Content. Proceedings of
the Access Grid Retreat, 2007.

[34] Luc Renambot, Arun Rao, Rajvikram Singh, Byungil Jeong,
Naveen Krishnaprasad, Venkatram Vishwanath, Vaidya Chan-
drasekhar, Nicholas Schwarz, Allan Spale, Charles Zhang,
Gideon Goldman, Jason Leigh, and Andrew Johnson. SAGE:
the Scalable Adaptive Graphics Environment. In Fourth
Annual Workshop on Advanced Collaborative Environments
(WACE), 2004.

[35] Jamie Shotton, Andrew Fitzgibbon, Mat Cook, Toby Sharp,
Mark Finocchio, Richard Moore, Alex Kipman, and Andrew
Blake. Real-Time Human Pose Recognition in Parts from
Single Depth Images. IEEE Conference on Computer Vision
and Pattern Recognition (2008), 2(3):1297–1304, 2011.

[36] L. Shupp, C. Andrews, M. Kurdziolek, B. Yost, and C. North.
Shaping the Display of the Future: The Effects of Dis-
play Size and Curvature on User Performance and Insights.
Human-Computer Interaction, 24(1), 2009.

[37] Daniel Stødle, Tor-magne Stien Hagen, John Markus
Bjørndalen, and Otto J Anshus. Gesture-Based, Touch-Free
Multi-User Gaming on Wall-Sized, High-Resolution Tiled
Displays. Journal of Virtual Reality and Broadcasting,
5:0009–6, 2008.

[38] Daniel Vogel and Ravin Balakrishnan. Distant Freehand
Pointing and Clicking on Very Large, High Resolution Dis-
plays. Proceedings of the 18th Annual ACM Symposium on
User interface Software and Technology, 10(3):33, 2005.

[39] Brandt Westing, Benjamin Urick, Maria Esteva, Freddy Rojas,
and Weijia Xu. Integrating Multi-Touch in High-Resolution
Display Environments. In 2011 International Conference
for High Performance Computing Networking Storage and
Analysis SC, pages 1–9. IEEE, 2011.

247

