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Abstract—This paper reports on a comprehensive, fully au-
tomated resource use monitoring package, TACC Stats, which
enables both consultants, users and other stakeholders in an HPC
system to systematically and actively identify jobs/applications
that could benefit from expert support and to aid in the diagnosis
of software and hardware issues. TACC Stats continuously collects
and analyzes resource usage data for every job run on a system
and differs significantly from conventional profilers because it
requires no action on the part of the user or consultants—it is
always collecting data on every node for every job. TACC Stats is
open source and downloadable, configurable and compatible with
general Linux-based computing platforms, and extensible to new
CPU architectures and hardware devices. It is meant to provide
a comprehensive resource usage monitoring solution. In addition
to describing TACC Stats, the paper illustrates its application to
identifying production jobs which have inefficient resource use
characteristics.

I. INTRODUCTION

High performance computer architectures are complex and
rapidly evolving. These systems are expensive, critical to
advanced science and engineering and often heavily over-
subscribed. There is thus an urgent need to utilize these
systems as effectively as possible. Users seldom attempt com-
prehensive adaptation to new architectures or performance
optimization. Prior to the package reported in this paper,
there have been no self-contained, open source monitoring
and analysis solutions which combine system-wide coverage,
low overhead, a comprehensive monitoring scope, and that
resolve resource use by job. The result is that neither users
nor system managers/consultants have accurate knowledge
concerning the effectiveness of these critical resources for
science and engineering. This paper reports on a systematic
and comprehensive approach to characterizing the resource
use of jobs and applications on high performance computer
systems, in particular, for identifying those jobs/applications
which use system resources with significant inefficiency.

The package which implements this approach, TACC Stats,
unifies and extends the measurements taken by Linux monitor-
ing utilities such as systat/SAR, iostat [1], etc. and other Linux
utilities. It resolves measurements by job and hardware device
so that individual jobs/applications can be analyzed separately.
TACC Stats collects data such as core-level CPU usage, sock-
etlevel memory usage, swapping and paging statistics, system
load and process statistics, system and block device counters,
interprocess communications, filesystems usage (NFS, Lustre,
Panasas), interconnect fabric traffic, and CPU counters and
Uncore counters (e.g. counters from the Memory Controller,

Cache and NUMA Coherence Agents, Power Control Unit). It
can be readily modified or extended.

TACC Stats also provides a set of analysis and reporting
tools which analyze TACC Stats resource use data and report
jobs/applications with low resource use efficiency or that
appeared to experience software or hardware issues. TACC
Stats has extremely low overhead, allowing it to monitor every
job and node and to be active at all times. It is initialized at
the beginning of a job and collects data at specified intervals
during job execution and once more at the end of a job. Each
execution of TACC Stats takes less than 0.5s. When executed at
the default interval (every 10 minutes) we estimate an overhead
of less than 0.1%.

TACC Stats can be used to automatically generate analyses
and reports such as average cycles per instruction (CPI),
average and peak memory use, average and peak memory
bandwidth use, interconnect traffic, and more on each job
and over sets of jobs grouped according to user, application,
project number, and date. These reports enable systematic
identification of jobs, applications, or specific implementations
of applications (such as building on one MPI stack vs an-
other) which could benefit from architectural adaptation and
performance tuning. In addition these analyses are potent tools
for catching user mistakes such as allocating multiple nodes
to a single-node shared-memory parallelized application or
diagnosing system issues such as hardware and file-system
failures.

TACC Stats has been collecting job-level performance
data on all jobs run on the Lonestar and Stampede systems
since September 2013. The current version of the performance
monitoring framework has been implemented through modifi-
cations and enhancements to an older version of TACC Stats
that was originally developed for and operated on the now
retired Ranger system [2]. In this updated implementation,
TACC Stats has been modified to readily support new CPU
architectures and hardware devices. This update facilitated
the current deployment of TACC Stats on the Lonestar and
Stampede systems, and in particular supported the collection
of data from numerous hardware counters available on Intel
Sandy Bridge processors, which constitute much of Stampede’s
computational resources. The counters have since been ex-
tended to support Intel’s Ivy Bridge processors. In addition,
a suite of job-level metrics have been added which can be
computed for any job by using new command line tools and
an intuitive web interface, allowing the analysis of collected
data by experts and non-experts alike. The tools and interface
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are currently in use by staff at TACC, and it is planned to
make the web-based interface available to TACC’s users.

While this data is used to inform diagnosis of system issues
and decisions regarding hardware and software deployment,
best practices for running applications, job scheduling, and
allocation requests, we restrict the topics of this paper to the
description of the TACC Stats package and its utility in the
identification of applications that may be running unnecessarily
inefficiently. We demonstrate the latter topic in part through
several user application-based case studies.

TACC Stats is one component of an ongoing HPC systems
analytics project, SUPReMM [3], which combines several
efforts to produce an overall collection and analysis frame-
work. Data collected through TACC Stats is fed into the
eXtrem Digital Metrics on Demand framework, XDMoD [4],
which was originally targeted at managers and providers
of computational resources of the XSEDE [5] organization
but is now also available as an open source product [6].
This framework originally provided for analysis of metrics
including: number of jobs, CPUs consumed, wait time, and
wall time, with minimum, maximum and the average of these
metrics, in addition to many others. These metrics can be
broken down by: field of science, institution, job size, job wall
time, NSF directorate, NSF user status, parent science, person,
principal investigator, and by resource. The SUPReMM project
has enabled TACC Stats data to be included alongside these
other metrics as a part of XDMoD. Additionally, TACC Stats
leverages the Lariat [7] project at TACC to discover the usually
unknown details about a job that includes executable names for
parallel jobs; their working directories, size, creation date, and
SHA1 hash; and shared libraries and environment modules that
they may employ.

II. RELATED WORK

A similar approach to system-wide, job-level monitoring
was reported by Del Vento et. al. in [8] and was used for
identifying poorly performing jobs and diagnosis of code
failures. The infrastructure reported in [8] was, however, based
on proprietary systems (IBM POWER/AIX) while TACC Stats
is designed for open-source software based HPC clusters.
In particular, the approach adopted by Del Vento et. al.
relied on a command, hpmstats, that is available only
on AIX systems to collect hardware counter data. A more
actively developed measurement system, OVIS [9], utilizes a
lightweight distributed metric service (LDMS) designed for
Cray machines and also provides similar capabilities to TACC
Stats. The open source system currently most comparable to
TACC Stats in terms of functionality is the HOPSA project’s
LWM2 performance screening tool [10]. LWM2’s reported data
collection (particularly from hardware counters) is not nearly
as comprehensive as TACC Stats though. Neither OVIS nor
LWM2 provide capabilities to resolve and analyze resource
usage data by user, application, and/or project as TACC
Stats/Lariat does.

There are many other open source and commercial resource
usage monitoring tools which include: systat/SAR [1], iostat,
CLUMON [11], PCP [12], Ganglia [13], and Nagios [14]. Only
one of these, CLUMON, which uses data from PCP, is capable
of resolving the data by job at the core level. CLUMON and

PCP do not, however, collect data from hardware performance
counters. Ganglia and Nagios do not resolve data by jobs or
users. None of these systems is capable of resolving data at
the application and/or project level.

While it may be possible to combine several of these
tools to approximate the functionality of TACC Stats, such
an approach would have significantly greater overhead and
complexity than the single, comprehensive job-level resource
usage monitor that TACC Stats is intended to be.

III. DESCRIPTION OF TACC STATS

The currently downloadable version of the TACC Stats
package [15] is composed of four modules:

1) monitor collects the resource usage data on every
node

2) pickler processes the node-level data into job-level
data

3) analysis provides data analysis and plotting tools
4) site provides a searchable and browsable web inter-

face which dynamically generates plots and metrics
along with providing access to raw data

TACC Stats is Python-based and can be configured by
modifying a single file and installed using standard Python
setup tools such as pip or easy_install. RPM’s are also
supported by the build system and are in fact how TACC Stats
is deployed on TACC’s systems.

The device data currently collected on Stampede are tab-
ulated in Table I, where TACC Stats’s abbreviated name
for the device, full path to the source of the data, and a
short description of the device are given. The exact address
of all model-specific registers (MSR) and PCI configuration
space counter controller registers and counter registers [16]
are tabulated in the TACC Stats Doxygen documentation.
The MSR registers and PCI configuration space (i.e. PCI
device registers) are mapped to pseudo-files in Linux operating
systems and control debugging, program execution tracing,
and performance monitoring of CPUs and closely associated
components. The explicit location of counters collected from
PCI configuration space are given here because we found these
to be challenging to locate. Detailed information about Intel
Sandy Bridge core and uncore counters can be found in [16]
and [17].

A. monitor

monitor is a 400KB-sized executable with several
device-generic routines and device-specific modular routines
for each device to be monitored. The collection of data from
each hardware device is programmed in a templated manner—
to add support for an entirely new hardware device a single C
file with 4 routines must be written. The recommended method
for adding hardware devices is included in the TACC Stats
Doxygen documentation.

If data is not desired for a particular device that device
can be simply disabled at compilation time. However, this is
unnecessary because monitor checks for the presence of a
particular device at run time and disables collection for devices
which are not present. For example, monitor will check the
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Device Source Description
block /sys/block/DEV/stat block device statistics (per device DEV)
cpu /proc/stat scheduler accounting (per CPU)
ib ext infiniband/mad.h routines Infiniband Usage - Extended (per IB device)
intel snb /dev/cpu/CPU/msr Sandy Bridge (per CPU = 0-15)
intel snb cbo /dev/cpu/SOCKET/msr Cache Agent (per socket SOCKET = [0,8])
intel snb hau /proc/bus/pci/[7f,ff]/[0e.0,0e.1] Home Agent (per socket)
intel snb imc /proc/bus/pci/[7f,ff]/[10.0,10.1,10.4,10.5] Memory Controller (per socket)
intel snb pcu /dev/cpu/SOCKET/msr Power Controller (per socket SOCKET = [0,8])
intel snb qpi /proc/bus/pci/[7f,ff]/[08.2,09.2] QuickPath Interconnect (per socket)
intel snb r2pci /proc/bus/pci/[7f,ff]/13.1 Ring to PCI Express (per socket)
llite /proc/fs/lustre/llite/stats Lustre FS (per mount)
lnet /proc/sys/lnet/stats Lustre Network (per mount)
mdc /proc/fs/lustre/mdc/MOUNT/stats Metadata Client (per mount MOUNT)
mem /sys/devices/system/node/DEV/meminfo memory usage (per node)
net /sys/class/net/DEV/statistics network device usage (per device DEV)
nfs /proc/self/mountstats NFS file system usage (per device)
numa /sys/devices/system/node/SOCKET/numastat NUMA statistics (per socket SOCKET)
osc /proc/fs/lustre/osc/MOUNT/stats object storage client statistics (per mount MOUNT)
ps /proc/stat process statistics (per node)
sysv shm /proc/sysvipc/shm SysV shared memory segment usage (per node)
tmpfs proc/mounts ram-backed file system usage (per node)
vfs /proc/sys/fs/dentry-state dentry/file/inode/cache usage (per node)
vmstat /proc/vmstat virtual memory statistics (per node)

TABLE I. LIST OF DEVICE DATA COLLECTED ON STAMPEDE WITH DATA SOURCE AND DESCRIPTION.

Fig. 1. Histograms generated from executables run (since September 2013) with a name that contains the substring vasp_std (Vienna Ab initio Simulation
Package [18]). The plots show histograms for the number of jobs with a particular (from left to right, top to bottom): run time, size in cores, average CPI, and
memory bandwidth as a percentage of peak bandwidth.
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cpuid vendor and signature before programming or reading
data from the msr file. If the CPU signature doesn’t match the
expected one or the device doesn’t exist monitor will ignore
that device. This allows the same build of monitor to run
on nodes with disparate architectures and still correctly collect
the data from each node. In fact, all devices can be enabled at
all times, whether they are available on a particular platform
or not, and monitor will correctly run, ignoring any missing
devices.

In monitor’s current configuration on Lonestar and Stam-
pede, it is run in the prolog of the job scheduler, programming
the counters where necessary and collecting the initial values
from the counters. The initial run takes ∼1s. monitor is then
run every ten minutes using the standard UNIX task scheduling
facility, cron. Each of these collections requires ∼0.5s. It is
then called at the end of the job in the epilog, again requiring
∼0.5s. This results in at least 2 samples per job.

During each execution of monitor, the data is written to
a text file local to the compute node on which the module is
running. The text file need not be local; however, we have not
tested the load induced by writing to a distributed filesystem,
e.g. Lustre. Each entry in the text file is labeled by Job ID
and POSIX time. Every 24 hours a new file is started and the
old file is moved from each compute node to a centralized
location.

B. pickler

Every 24 hours the pickler module processes the node-
level data collected by monitor into job-level data and stores
each job’s data in a Python pickle file. “Pickling” is an in-built
Python language process for serializing Python objects into
byte streams which can be written to storage or sent across the
network. These byte streams can be decoded and deserialized
back into native Python objects [19]. The Python pickle file
is composed of nested Python dictionaries indicating Job ID,
nodes, device type, device name or number if multiple devices
of a particular type are present, events, and time stamps for
each data sample. The data is regularized as it is picked—
individual nodes in a jobs may run their cron tasks at slightly
different times due to the overall system load on each node
resulting in slightly different POSIX time stamps that must
be treated. For most jobs processed this discrepancy in times
is non-existent or very modest. If discrepancies are found
pickler will find the node with the median number of
time records and use that node’s time stamps as the standard.
Other nodes’ records are then matched to those time stamps,
replacing their time stamps with the standard time stamp
closest in value. We are currently investigating replacing this
procedure with an interpolation scheme.

In addition, data anomalies due to counter overflow and
wrapping, although occurring only rarely, are corrected. We
have calculated that for the counters currently supported,
overflow cannot occur more than once in the 10 minute interval
between collections. The current infrastructure cannot account
for multiple overflows in a collection interval, so care should
be taken by monitor users who are interested in counters
other than those provided in TACC Stats. Roughly 2.5GB of
pickled data from Stampede and 300MB from Lonestar are
generated every day.

C. analysis

This module contains a suite of tests and plotting rou-
tines that can be run on arbitrary sets of jobs. Every
test can be invoked through a single command-line tool,
job_sweeper.py, with arguments controlling the range of
jobs to test, thresholds to compare metrics against, and the
number of shared-memory parallel processes to use. Currently
we run the following tests every 24 hours:

• Imbalance: The ratio of standard deviation over the
mean of an event is computed over all cores at each
time point. This ratio is averaged over time and
compared to a threshold of 1.0. The default event is
the number of times a cache line is loaded into the L1
data cache, labeled LOAD_L1D_ALL.

• High CPI: We compute the average Cycles Per In-
struction over all cores and compare the result to a
threshold of 1.0. The average CPI of jobs on Stampede
over the past three months is roughly 0.6.

• Idle: This test uses several counters to determine if a
particular node is idle for most of a job’s runtime. A
representative plot of such a job is shown in Figure 2.

• Catastrophe: This test finds step-function like behavior
in certain events, by default LOAD_L1D_ALL, on a
node with a running job. For an example plot of such
a job see Figure 3. The catastrophic crash shown in
this job was due to the failure of a node. This test
can also be used to test for compilation activity on
compute nodes (often considered a waste of system
resources), where low resource usage for most devices
is followed suddenly by high activity. An example of
such a job is shown in Fig. 4

In the above analyses, it is usually critical to know how many
cores on each node the user has intended to use. For example,
if a user intentionally idles half the cores on each node in order
to double the amount of memory available to each core that
they do use, we should account for this when trying to detect
an catastrophic drop in performance or a high CPI. We derive
this information from our Lariat data where possible [7], and
ignore jobs for which we cannot determine how many cores
were supposed to be in use.

Figures 2 and 3 were generated using the analysis mod-
ule command line tool job_plotter.py. Similar figures
for any combination of devices can be generated by using the
appropriate command line arguments.

D. site

The site module provides a web site interface to the
TACC Stats package. It builds a database of the job metadata
and metrics through daily updates and serves the job time
series data as media files. Currently, five metrics are computed
and stored in the database for every successful production level
job (for jobs over 1 hour): mean cycles per instruction, mean
memory bandwidth, idleness, step function similarity, and the
memory usage high water mark.

A representative screenshot of all jobs run since September
2013 which contain vasp_std in the executable name (jobs

16



0 10 20 30 40
Time (hrs)

c502-501(0.54)

c506-803(2.76)

c503-203(2.72)

c506-202(2.64)

c505-001(2.76)

c506-904(2.73)

c505-401(2.71)

CLOCKS_UNHALTED_REF/INSTRUCTIONS_RETIRED
¯Mean=2.41±0.82

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

ID: 3130503, u: userxxx, q: normal, N: Clustering, D: 2014-04-10 02:08:25, NH: 7
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Fig. 2. A job flagged for running with idle nodes. The nodes are on the
y-axis and the time stamp is on the x-axis. In this figure we are showing
the number of Reference Clock Cycles per Instruction Retired. The core- and
time-averaged CPI per node can be seen by each node name on the y-axis
and the average over all nodes in the plot title. It can be inferred from this
plot that only one of seven nodes was active for this job.

using TACC’s standard build of the Vienna Ab initio Simu-
lation Package [18]) are shown in Figure 1. The histograms
from left to right, top to bottom show: run times, number
of cores used, CPI with mean and variance computed, and
memory bandwidth as a percentage of peak bandwidth. Jobs
are currently searchable by date, user, Project, executable, and
Job ID. These four histograms are generated automatically
using the results of each search. Performance metrics such
as CPI or Memory Bandwidth are particularly useful because
abnormal jobs, jobs which had significantly higher or lower
CPI than the average for a particular application, can be flagged
and investigated further.

Each job entry on the web interface has the Job ID, User
ID, user name, project, executable, start time, end time, run
time, queue, job name, exit status, cores and nodes used, and
CPI if computed. Every job’s resource usage can be examined
in detail using the plots automatically generated in the web
interface such as those seen in Figures 2 and 3, and from the
raw data. A particular combination of plots we’ve found to
be useful for characterizing a job’s performance is shown in
Figure 4. This plot is generated and displayed every time a
particular job is selected in the browser. From top to bottom,
the plots in Figure 4 show for each node the number of
vectorized instructions issued, memory bandwidth, memory
usage, Lustre network bandwidth, Infiniband bandwidth (less
Lustre traffic), and CPU user fraction.
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ID: 3147958, u: userxx, q: normal, N: scheduler_sl..., D: 2014-04-10 18:14:52, NH: 2
E: software/pegasus-mpi-cluster/pegasus-mpi-cluster,
CWD: $SCRATCH/.../soykb/20140410T102233-0700

Fig. 3. Multiple CPU counters are seen to crash simultaneously on one of the
nodes at around hour 3 for this job. This job was flagged by the Catastrophe
test.

IV. CASE STUDIES

We use five case studies to demonstrate the utility of the
TACC Stats package. Each of these case studies was the result
of a particular job being flagged by at least one of our nightly
tests. We present the first case study in the greatest detail and
summarize the results of the other four. The general procedure
used in these case studies is the following:

1) A job is flagged and we contact the user and verify
that the user believes they ran the application cor-
rectly for the job in question. This is an important
step because users regularly run applications in a in-
efficient manner intentionally for a variety of reasons.

2) We request from the user information regarding the
location, configuration, and compilation of the ap-
plication along with batch submission scripts and
permission to work with their files.

3) This information is then used to profile the code using
a standard profiler or if profiling seems unnecessary
we make a recommendation to the user.

Any profiling performed in the following used the Intel VTune
profiler [20] in hotspot mode. VTune can generate an individ-
ual performance report for each MPI task and indicates the
amount of time each task spent on a line of code. For all
case studies presented here the behavior of all MPI tasks were
similar. The names of user applications have been altered to
maintain anonymity except in the case of community software.
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Fig. 4. Multiple CPU counters are seen to start simultaneously after a long
idle period. This signature is indicative of a compile and execute (seen here
to start around 45 mn) workflow which is discouraged on TACC compute
nodes. The Lustre traffic (the plot labeled by lnet) during compilation arises
from accesses to the user’s source code on the distributed filesystem. This job
was flagged by the Catastrophe test. We find this particular combination of
plots to be particularly useful for characterizing a job’s performance (from
top to bottom): vectorized instructions issued, memory bandwidth, memory
usage, Lustre network bandwidth, Infiniband bandwidth (less Lustre traffic),
and CPU user fraction. Each line represents a distinct node.

A. Case 1: Turbulence

The Turbulence application is a 3D Navier-
Stokes solver implemented in Fortran and capable of
hybrid distributed- and shared-memory parallelization
(MPI/OpenMP). The solver decomposes the simulated
system’s geometry over MPI tasks and parallelizes
computations within tasks using OpenMP. The application
instance we considered, bcRoughnessCylinder, was identified
by TACC Stats as potentially underperforming according to
the cycles per instruction (CPI) metric with a value of 1.1
(compare to the average CPI = 0.6). The geometry was not
easily modifiable so we ran the solver on 32 nodes.

After profiling the code we found that generally the solver

was written in an efficient manner, resulting in few obvious
improvements to be made. The most significant hotspots in the
solver could be attributed to non-locality of data, both from
distributed- and shared-memory. For our profiling we ran the
solver for 25 time steps for a total run time of 1350s. The
main loop required 983s of this time (the user typically runs
the solver for hundreds of time steps but believed our shorter
runs would be sufficient for profiling the main loop). The top
hotspots for an example MPI task are shown in Table II (note
that the time spent in a function is aggregated over all threads
calling the function).

Function Time (s) File
passmpidouble 976 parallel.f90
u2v 781 mainvars.f90
comppointfluxzeta 706 termsInviscid.f90

TABLE II. TOP HOTSPOTS FOR UNOPTIMIZED TURBULENCE BINARY.

The solver spent the most time in the user defined
passmpidouble function. passmpidouble updates com-
ponents of a large array (Utemp) shared between MPI tasks.
We made no attempt to optimize this function. We did find
the parallelization scheme of 2 MPI tasks per node and 8
OpenMP threads per task to result in the shortest run time.
Other parallelization schemes were tried resulting in worse
performance. This result was confirmed and expected by the
user.

The u2v function consumed the second largest proportion
of solver time. This function performs intrinsic Fortran oper-
ations on arrays to convert the application’s conservative vari-
able arrays (Utemp) to primitive variable arrays (primVar).
The OpenMP directive WORKSHARE was used to parallelize
this section of code over all OpenMP threads. We observed in
the VTune report that a significant portion of time spent in this
function was at the END WORKSHARE directive, indicating
overhead due to thread imbalance. This is likely because
the WORKSHARE directive requires synchronization at each
line within its parallelized block and may not be effectively
distributing the workload among threads, some of which suffer
more greatly from memory non-locality. We optimized u2v by
converting the WORKSHARE block composed of Fortran array
intrinsics to a loop explicitly over array elements parallelized
with the OpenMP parallel do-loop pragma: DO SCHEDULE
(GUIDED). This allows the OpenMP runtime system to
schedule threads more efficiently.

The comppointfluxzeta function computes a number
of quantities using the primitive and conservative arrays. Most
of the time spent in this function can be attributed to compu-
tations using data in shared-memory with poor spatial locality.
This is most likely because the primitive and temporary
variables are 4D arrays and large in size. The code developers
minimized memory access overheads by first copying the 4D
arrays to temporary arrays of smaller dimensionality before
performing several computations involving these arrays. We
observed in comppointfluxzeta that the temporary arrays
with reduced dimensionality were not being used in several
places that they could be. This was changed in the optimized
version resulting in a 20% reduction in time spent in the
function. These results are summarized in Table III. Note that
the timings shown for the u2v and comppointfluxzeta
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routines are aggregated over the 8 threads, while Main Loop
is just the overall run time.

Function Pre(s) Post(s) Pre/Post(%)
Main Loop 983 886 90
u2v 781 185 24
comppointfluxzeta 706 561 79

TABLE III. TIMINGS PRE- AND POST-OPTIMIZATION.

We reduced the overall runtime of the main loop
by 10% with the optimizations to the u2v and
comppointfluxzeta functions. This improvement is
not dependent on which MPI task is analyzed. We identified
additional potential improvements but believed these would
require significant changes throughout the application’s 70,000
lines of code.

B. Case 2: Singularity

The Singularity application is a distributed-memory
parallelized General Relativity code that aims to simulate
binary black hole systems. It is currently developed and used
by a single Stampede user. The executable consists of a C
binary which performs the computations and also runs Perl
scripts and makes system calls. This application was our 3rd
highest service unit (SU) consumer for January 1-March 31,
2014 that was flagged for a high CPI, with an SU usage of
239,631 and typical CPI of ∼1.15.

An inspection of the code revealed that it was compiled
with no optimization flags and contained numerous extraneous
I/O intensive calls to the UNIX cat and rm commands.
These calls were being issued from a single MPI process
out of 512 for the sole purpose of concatenating all the files
written from each process into a single file, and then removing
the 512 files. This requires an additional read and write to
the Lustre storage servers and unnecessary operations on the
Lustre metadata server. It is also work that can be done outside
the job environment after it has completed. The user stated this
workflow was necessary on a previous computing platform and
assumed it was on Stampede as well.

We enabled icc’s optimization level O3, enabled the
xhost SIMD vectorization flag, and removed the extraneous
system calls. Our user reported a 26% decrease in runtime for
production runs of 11,000 iterations from 19 to 14 hours.

C. Case 3: MILC su3_mode and su3_hmc_APBC

The MILC collaboration has a freely available software
suite known as the MILC code [21][22]. This code simulates
Quantum Chromodynamics (QCD) through a computation-
ally intensive hybrid of Monte-Carlo methods and Molecular
Dynamics known as Lattice Field Theory. A specific MILC
application, su3_mode, was flagged with a CPI of 1.2. This
should be compared with the average CPI over all MILC
applications’ of 0.72.

After profiling we saw that the code spent the most time
in MPI calls. We did not attempt to optimize the use of the
MPI library. Of routines within the application source code, we
found the job spent the most time in the matrix vector mul-
tiplication routines mult_su3_mat_vec_sum_4dir and

mult_adj_su3_mat_vec_4dir. We discovered that there
were SSE2 inline assembly macros for these functions in a
newer version of MILC which these particular MILC users at
TACC were unaware of. After enabling these macros in the
user’s code we found a 30% reduction in time spent in these
routines. The reduction in run time due to the modifications
was, however, hard to quantify due to the stochastic nature of
the underlying algorithm which leads to inconsistent run times
from instance to instance.

The user then directed us to another application from MILC
which their collaboration regularly runs on Stampede with
the rationale that the application, su3_hmc_APBC, shares
many of the same routines with su3_mode. We profiled this
application and observed the hotspots to be dominated by 3
different 3×3 complex matrix multiplication routines. We used
the SSE2 inline assembly routines for these routines as well,
and found a reliable 11% decrease in run time for the entire
application. Similar improvement was subsequently seen by
the user in several other MILC applications that rely on these
routines. The user base of MILC on TACC’s systems has been
notified of the benefits to be gained from using these optimized
routines.

D. Cases 4 & 5: Genome_map & SI_Screening

Jobs run using these application were flagged while testing
for idle nodes. The Genome_map user requested two nodes,
however, their application was only capable of shared memory
parallelization and was actually running on just one node.
The SI_Screening user was requesting seven nodes but
only running the application on one (Fig. 2). The users have
been notified and they have since stopped submitting multi-
node jobs for these applications. These egregious wastes of
system and user resources would have gone unnoticed without
the TACC Stats package. Perhaps surprisingly, several such
jobs consuming significant SUs are identified daily on TACC’s
Stampede system.

V. FUTURE WORK

A. Validation

We currently only use a small percentage of the data
available to us for our analyses. There are several reasons for
this:

• Not all of the data is obviously useful.

• The data is incompletely understood. We are still
interpreting many of the Intel counters and some of
the counters from the Linux OS. The documentation
regarding performance counters is often ambiguous or
incomplete.

• The data is imperfect. For example, the vector floating-
point instruction counters on Stampede’s Intel Sandy
Bridge cores count instructions issued not instructions
retired. These instructions may be reissued many times
within the pipeline while waiting for operands to be
fetched from higher cache levels or main memory. As
a result, we have seen order-of-magnitude higher dif-
ferences in expected and measured counts for floating-
point operations. We do, however, still use this data
as a rough guide as to whether the application was

19



vectorized during compilation and was performing
work while executing.

• We will continue to extend the range of hardware
devices supported. In the near term, we hope to
develop support for the Intel Xeon Phi Co-processor.

The second and third issues are closely related and could
be grouped under the term validation. Validation is a labor
intensive and on-going effort for the project. There are also
degrees of validation and data must be interpreted with this in
mind. For example, it is often possible to perform consistency
checks between counters that should be related in a predictable
way, but not the raw value of the counter due to indeterminism.
In each case, the counters used here have either been validated
with test codes or their deficiencies understood.

B. Package Distribution

The TACC Stats package is configurable and should be
compatible with all Linux-based HPC platforms. However,
we have currently only been able to test this compatibility
on TACC’s Lonestar and Stampede systems. These systems
both use CentOS [23] as their operating systems but have
compute nodes with distinct chip architectures. It remains
to be seen how robust the configuration process is on other
Linux distributions and how straightforward adding additional
hardware support is for non-developers. We plan to work
closely with any initial adopters in the HPC community to
resolve unforeseen deficiencies in compatibility and provide
the appropriate code for architectures or devices that are not
currently available in TACC Stats. Eventually, we hope to
develop a general procedure for the inclusion of code that
provides new hardware support into the TACC Stats repository
so that anyone may contribute.

The command line tools and web interface are currently
used by consultant staff at TACC. In the near term future we
expect to fully integrate this data into the XDMoD Metrics
on Demand [3][4] infrastructure so that users can browse their
own jobs through this interface and examine the associated
plots and analyses relevant to performance.

We are also currently working with Louisiana State Univer-
sity, NCAR and Purdue to install TACC Stats on HPC systems
at those institutions. This will aid in developing portability and
robustness across platforms.

VI. SUMMARY

The TACC Stats package provides a job-level, system-
wide resource usage monitoring solution for HPC systems.
It continuously monitors all nodes and all jobs. The jobs’
resource usage data are automatically consolidated and tested
for inefficiencies and software and hardware failures. This data
is searchable and browsable through the web interface, with
plots and tests generated automatically via the web interface.
In addition, command line tools are available for customizable
tests and/or plots. TACC Stats is open source, downloadable,
and configurable.

We included the Case Studies to provide examples of
how we are currently using TACC Stats. We are using TACC
Stats as a force multiplier—a single consultant can detect one
inefficient application or job among thousands and then take

a closer look at that application or job, removing any obvious
inefficiencies. This will result in large performance gains in
some instances and smaller gains in others as demonstrated in
our 5 case studies. While the performance improvements made
in this paper were for the most part modest, we note that the
flagged jobs were run in production mode. Applications run
in production mode on TACC’s systems, in our experience,
rarely have very large inefficiencies that are straightforward to
correct except in the case of gross user error such as completely
neglecting optimization flags or running shared-memory code
in a distributed memory fashion (as seen in Case Studies 4 and
5). Intensive expert consultation probably would have achieved
larger gains in performance than seen in this paper. While we
did not have a consultant to devote to every flagged application,
a single consultant was able to identify the applications for the
Case Studies and apply obvious optimizations to each case
study and gain a significant performance improvement.
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